2024-05-18 18:31:07 +01:00
|
|
|
|
import torch
|
2024-05-18 01:07:06 +01:00
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# "the convolutional layers mostly have 3×3 filters and follow two simple design rules: ..."
|
|
|
|
|
# He et al., ‘Deep Residual Learning for Image Recognition’
|
|
|
|
|
RESNET_KERNEL_SIZE = 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# used to match dimensions of input to output, done by a 1x1 convolution
|
|
|
|
|
# He et al., ‘Deep Residual Learning for Image Recognition’ page 4
|
|
|
|
|
def projection_shortcut(in_channels, out_channels):
|
|
|
|
|
return nn.Sequential(
|
|
|
|
|
nn.Conv2d(
|
|
|
|
|
in_channels=in_channels,
|
|
|
|
|
out_channels=out_channels,
|
|
|
|
|
# "when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2"
|
|
|
|
|
# He et al., ‘Deep Residual Learning for Image Recognition’.
|
|
|
|
|
stride=2,
|
|
|
|
|
kernel_size=1,
|
|
|
|
|
),
|
|
|
|
|
nn.BatchNorm2d(out_channels),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
2024-05-18 01:40:11 +01:00
|
|
|
|
def __init__(
|
|
|
|
|
self, in_channels, out_channels, stride=1, shortcut=None, *args, **kwargs
|
|
|
|
|
):
|
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
2024-05-18 01:07:06 +01:00
|
|
|
|
self.conv0 = nn.Sequential(
|
|
|
|
|
nn.Conv2d(
|
|
|
|
|
in_channels, out_channels, kernel_size=3, stride=stride, padding=1
|
|
|
|
|
),
|
|
|
|
|
nn.BatchNorm2d(out_channels),
|
|
|
|
|
nn.ReLU(),
|
|
|
|
|
)
|
|
|
|
|
self.conv1 = nn.Sequential(
|
|
|
|
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
|
|
|
|
nn.BatchNorm2d(out_channels),
|
|
|
|
|
)
|
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
self.out_channels = out_channels
|
|
|
|
|
self.shortcut = shortcut
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
residual = x
|
|
|
|
|
out = self.conv0(x)
|
|
|
|
|
out = self.conv1(out)
|
|
|
|
|
if self.shortcut:
|
|
|
|
|
out += self.shortcut(residual)
|
|
|
|
|
else:
|
|
|
|
|
out += residual
|
|
|
|
|
out = self.relu(out)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# MAI in ResNet with 34 layers
|
|
|
|
|
# He et al., ‘Deep Residual Learning for Image Recognition’.
|
|
|
|
|
class MaiRes(nn.Module):
|
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
# first 7x7 conv layer
|
|
|
|
|
self.conv = nn.Conv2d(
|
|
|
|
|
in_channels=3,
|
|
|
|
|
out_channels=64,
|
|
|
|
|
stride=2,
|
|
|
|
|
padding=3,
|
|
|
|
|
kernel_size=RESNET_KERNEL_SIZE,
|
|
|
|
|
)
|
|
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=RESNET_KERNEL_SIZE, stride=2)
|
|
|
|
|
|
|
|
|
|
# layers are named after the colors used for each group
|
|
|
|
|
# in the diagram presented in the ResNet paper
|
|
|
|
|
|
|
|
|
|
# 3 residual blocks for a total of 6 layers
|
|
|
|
|
self.layer_purple = nn.Sequential(
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=64,
|
|
|
|
|
out_channels=64,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=64,
|
|
|
|
|
out_channels=64,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=64,
|
|
|
|
|
out_channels=64,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 4 residual blocks for a total of 8 layers
|
|
|
|
|
self.layer_green = nn.Sequential(
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=64,
|
|
|
|
|
out_channels=128,
|
|
|
|
|
stride=2,
|
2024-05-18 02:28:35 +01:00
|
|
|
|
shortcut=projection_shortcut(in_channels=64, out_channels=128),
|
2024-05-18 01:07:06 +01:00
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=128,
|
|
|
|
|
out_channels=128,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=128,
|
|
|
|
|
out_channels=128,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=128,
|
|
|
|
|
out_channels=128,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 6 residual blocks for a total of 12 layers
|
|
|
|
|
self.layer_red = nn.Sequential(
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=128,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
stride=2,
|
|
|
|
|
shortcut=projection_shortcut(in_channels=128, out_channels=256),
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=256,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=256,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=256,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=256,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=256,
|
|
|
|
|
out_channels=256,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 3 residual blocks for a total of 6 layers
|
|
|
|
|
self.layer_blue = nn.Sequential(
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=256,
|
|
|
|
|
out_channels=512,
|
|
|
|
|
stride=2,
|
|
|
|
|
shortcut=projection_shortcut(in_channels=256, out_channels=512),
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=512,
|
|
|
|
|
out_channels=512,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
ResidualBlock(
|
|
|
|
|
in_channels=512,
|
|
|
|
|
out_channels=512,
|
|
|
|
|
stride=1,
|
|
|
|
|
),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.avgpool = nn.AvgPool2d(kernel_size=RESNET_KERNEL_SIZE)
|
2024-05-18 22:27:05 +01:00
|
|
|
|
self.fc = nn.Linear(in_features=2048, out_features=1)
|
2024-05-18 01:07:06 +01:00
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = self.conv(x)
|
|
|
|
|
x = self.maxpool(x)
|
|
|
|
|
|
|
|
|
|
x = self.layer_purple(x)
|
|
|
|
|
x = self.layer_green(x)
|
|
|
|
|
x = self.layer_red(x)
|
|
|
|
|
x = self.layer_blue(x)
|
|
|
|
|
|
|
|
|
|
x = self.avgpool(x)
|
2024-05-18 19:58:44 +01:00
|
|
|
|
x = x.view(x.size(0), -1)
|
2024-05-18 01:07:06 +01:00
|
|
|
|
x = self.fc(x)
|
|
|
|
|
|
|
|
|
|
return x
|