implement ResNet model
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
FILTER_COUNT = 32
|
||||
KERNEL_SIZE = 2
|
||||
CROP_SIZE = 200
|
||||
CROP_SIZE = 224
|
||||
BATCH_SIZE = 4
|
||||
EPOCHS = 20
|
||||
EPOCHS = 5
|
||||
|
189
resnet.py
Normal file
189
resnet.py
Normal file
@@ -0,0 +1,189 @@
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
# "the convolutional layers mostly have 3×3 filters and follow two simple design rules: ..."
|
||||
# He et al., ‘Deep Residual Learning for Image Recognition’
|
||||
RESNET_KERNEL_SIZE = 3
|
||||
|
||||
|
||||
# used to match dimensions of input to output, done by a 1x1 convolution
|
||||
# He et al., ‘Deep Residual Learning for Image Recognition’ page 4
|
||||
def projection_shortcut(in_channels, out_channels):
|
||||
return nn.Sequential(
|
||||
nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
# "when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2"
|
||||
# He et al., ‘Deep Residual Learning for Image Recognition’.
|
||||
stride=2,
|
||||
kernel_size=1,
|
||||
),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, stride=1, shortcut=None):
|
||||
self.conv0 = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
in_channels, out_channels, kernel_size=3, stride=stride, padding=1
|
||||
),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
||||
nn.BatchNorm2d(out_channels),
|
||||
)
|
||||
self.relu = nn.ReLU()
|
||||
self.out_channels = out_channels
|
||||
self.shortcut = shortcut
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
out = self.conv0(x)
|
||||
out = self.conv1(out)
|
||||
if self.shortcut:
|
||||
out += self.shortcut(residual)
|
||||
else:
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
# MAI in ResNet with 34 layers
|
||||
# He et al., ‘Deep Residual Learning for Image Recognition’.
|
||||
class MaiRes(nn.Module):
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
# first 7x7 conv layer
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=3,
|
||||
out_channels=64,
|
||||
stride=2,
|
||||
padding=3,
|
||||
kernel_size=RESNET_KERNEL_SIZE,
|
||||
)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=RESNET_KERNEL_SIZE, stride=2)
|
||||
|
||||
# layers are named after the colors used for each group
|
||||
# in the diagram presented in the ResNet paper
|
||||
|
||||
# 3 residual blocks for a total of 6 layers
|
||||
self.layer_purple = nn.Sequential(
|
||||
ResidualBlock(
|
||||
in_channels=64,
|
||||
out_channels=64,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=64,
|
||||
out_channels=64,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=64,
|
||||
out_channels=64,
|
||||
stride=1,
|
||||
),
|
||||
)
|
||||
|
||||
# 4 residual blocks for a total of 8 layers
|
||||
self.layer_green = nn.Sequential(
|
||||
ResidualBlock(
|
||||
in_channels=64,
|
||||
out_channels=128,
|
||||
stride=2,
|
||||
shortcut=projection_shortcut(in_channels=64, out_channels=64),
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=128,
|
||||
out_channels=128,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=128,
|
||||
out_channels=128,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=128,
|
||||
out_channels=128,
|
||||
stride=1,
|
||||
),
|
||||
)
|
||||
|
||||
# 6 residual blocks for a total of 12 layers
|
||||
self.layer_red = nn.Sequential(
|
||||
ResidualBlock(
|
||||
in_channels=128,
|
||||
out_channels=256,
|
||||
stride=2,
|
||||
shortcut=projection_shortcut(in_channels=128, out_channels=256),
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=256,
|
||||
out_channels=256,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=256,
|
||||
out_channels=256,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=256,
|
||||
out_channels=256,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=256,
|
||||
out_channels=256,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=256,
|
||||
out_channels=256,
|
||||
stride=1,
|
||||
),
|
||||
)
|
||||
|
||||
# 3 residual blocks for a total of 6 layers
|
||||
self.layer_blue = nn.Sequential(
|
||||
ResidualBlock(
|
||||
in_channels=256,
|
||||
out_channels=512,
|
||||
stride=2,
|
||||
shortcut=projection_shortcut(in_channels=256, out_channels=512),
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=512,
|
||||
out_channels=512,
|
||||
stride=1,
|
||||
),
|
||||
ResidualBlock(
|
||||
in_channels=512,
|
||||
out_channels=512,
|
||||
stride=1,
|
||||
),
|
||||
)
|
||||
|
||||
self.avgpool = nn.AvgPool2d(kernel_size=RESNET_KERNEL_SIZE)
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc = nn.Linear(in_features=1000, out_features=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer_purple(x)
|
||||
x = self.layer_green(x)
|
||||
x = self.layer_red(x)
|
||||
x = self.layer_blue(x)
|
||||
|
||||
x = self.avgpool(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
5
train.py
5
train.py
@@ -9,6 +9,7 @@ from label import label_fake, label_real
|
||||
from model import mai
|
||||
from augmentation import transform_training, transform_validation
|
||||
from hyperparams import BATCH_SIZE, EPOCHS
|
||||
from resnet import MaiRes
|
||||
|
||||
TEST_SIZE = 0.1
|
||||
|
||||
@@ -37,7 +38,7 @@ def load_data():
|
||||
trust_remote_code=True,
|
||||
split="train",
|
||||
)
|
||||
flickr_dataset = load_dataset("nlphuji/flickr30k", split="test[:50%]")
|
||||
flickr_dataset = load_dataset("nlphuji/flickr30k", split="test[:25%]")
|
||||
painting_dataset = load_dataset(
|
||||
"keremberke/painting-style-classification", name="full", split="train"
|
||||
)
|
||||
@@ -128,7 +129,7 @@ def train():
|
||||
print(f"sample size: {sample_size}")
|
||||
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
model = mai.cuda()
|
||||
model = MaiRes().cuda()
|
||||
loss_fn = torch.nn.BCEWithLogitsLoss()
|
||||
optimizer = torch.optim.RMSprop(model.parameters(), lr=0.001)
|
||||
best_vloss = 1_000_000.0
|
||||
|
Reference in New Issue
Block a user