194 lines
5.5 KiB
Python
194 lines
5.5 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
|
||
|
||
# "the convolutional layers mostly have 3×3 filters and follow two simple design rules: ..."
|
||
# He et al., ‘Deep Residual Learning for Image Recognition’
|
||
RESNET_KERNEL_SIZE = 3
|
||
|
||
|
||
# used to match dimensions of input to output, done by a 1x1 convolution
|
||
# He et al., ‘Deep Residual Learning for Image Recognition’ page 4
|
||
def projection_shortcut(in_channels, out_channels):
|
||
return nn.Sequential(
|
||
nn.Conv2d(
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
# "when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2"
|
||
# He et al., ‘Deep Residual Learning for Image Recognition’.
|
||
stride=2,
|
||
kernel_size=1,
|
||
),
|
||
nn.BatchNorm2d(out_channels),
|
||
)
|
||
|
||
|
||
class ResidualBlock(nn.Module):
|
||
def __init__(
|
||
self, in_channels, out_channels, stride=1, shortcut=None, *args, **kwargs
|
||
):
|
||
super().__init__(*args, **kwargs)
|
||
|
||
self.conv0 = nn.Sequential(
|
||
nn.Conv2d(
|
||
in_channels, out_channels, kernel_size=3, stride=stride, padding=1
|
||
),
|
||
nn.BatchNorm2d(out_channels),
|
||
nn.ReLU(),
|
||
)
|
||
self.conv1 = nn.Sequential(
|
||
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
|
||
nn.BatchNorm2d(out_channels),
|
||
)
|
||
self.relu = nn.ReLU()
|
||
self.out_channels = out_channels
|
||
self.shortcut = shortcut
|
||
|
||
def forward(self, x):
|
||
residual = x
|
||
out = self.conv0(x)
|
||
out = self.conv1(out)
|
||
if self.shortcut:
|
||
out += self.shortcut(residual)
|
||
else:
|
||
out += residual
|
||
out = self.relu(out)
|
||
return out
|
||
|
||
|
||
# MAI in ResNet with 34 layers
|
||
# He et al., ‘Deep Residual Learning for Image Recognition’.
|
||
class MaiRes(nn.Module):
|
||
def __init__(self, *args, **kwargs) -> None:
|
||
super().__init__(*args, **kwargs)
|
||
|
||
# first 7x7 conv layer
|
||
self.conv = nn.Conv2d(
|
||
in_channels=3,
|
||
out_channels=64,
|
||
stride=2,
|
||
padding=3,
|
||
kernel_size=RESNET_KERNEL_SIZE,
|
||
)
|
||
self.maxpool = nn.MaxPool2d(kernel_size=RESNET_KERNEL_SIZE, stride=2)
|
||
|
||
# layers are named after the colors used for each group
|
||
# in the diagram presented in the ResNet paper
|
||
|
||
# 3 residual blocks for a total of 6 layers
|
||
self.layer_purple = nn.Sequential(
|
||
ResidualBlock(
|
||
in_channels=64,
|
||
out_channels=64,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=64,
|
||
out_channels=64,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=64,
|
||
out_channels=64,
|
||
stride=1,
|
||
),
|
||
)
|
||
|
||
# 4 residual blocks for a total of 8 layers
|
||
self.layer_green = nn.Sequential(
|
||
ResidualBlock(
|
||
in_channels=64,
|
||
out_channels=128,
|
||
stride=2,
|
||
shortcut=projection_shortcut(in_channels=64, out_channels=128),
|
||
),
|
||
ResidualBlock(
|
||
in_channels=128,
|
||
out_channels=128,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=128,
|
||
out_channels=128,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=128,
|
||
out_channels=128,
|
||
stride=1,
|
||
),
|
||
)
|
||
|
||
# 6 residual blocks for a total of 12 layers
|
||
self.layer_red = nn.Sequential(
|
||
ResidualBlock(
|
||
in_channels=128,
|
||
out_channels=256,
|
||
stride=2,
|
||
shortcut=projection_shortcut(in_channels=128, out_channels=256),
|
||
),
|
||
ResidualBlock(
|
||
in_channels=256,
|
||
out_channels=256,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=256,
|
||
out_channels=256,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=256,
|
||
out_channels=256,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=256,
|
||
out_channels=256,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=256,
|
||
out_channels=256,
|
||
stride=1,
|
||
),
|
||
)
|
||
|
||
# 3 residual blocks for a total of 6 layers
|
||
self.layer_blue = nn.Sequential(
|
||
ResidualBlock(
|
||
in_channels=256,
|
||
out_channels=512,
|
||
stride=2,
|
||
shortcut=projection_shortcut(in_channels=256, out_channels=512),
|
||
),
|
||
ResidualBlock(
|
||
in_channels=512,
|
||
out_channels=512,
|
||
stride=1,
|
||
),
|
||
ResidualBlock(
|
||
in_channels=512,
|
||
out_channels=512,
|
||
stride=1,
|
||
),
|
||
)
|
||
|
||
self.avgpool = nn.AvgPool2d(kernel_size=RESNET_KERNEL_SIZE)
|
||
self.fc = nn.Linear(in_features=2048, out_features=1)
|
||
|
||
def forward(self, x):
|
||
x = self.conv(x)
|
||
x = self.maxpool(x)
|
||
|
||
x = self.layer_purple(x)
|
||
x = self.layer_green(x)
|
||
x = self.layer_red(x)
|
||
x = self.layer_blue(x)
|
||
|
||
x = self.avgpool(x)
|
||
x = x.view(x.size(0), -1)
|
||
x = self.fc(x)
|
||
|
||
return x
|