Files
mai/resnet/resnet.py

194 lines
5.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
import torch.nn as nn
# "the convolutional layers mostly have 3×3 filters and follow two simple design rules: ..."
# He et al., Deep Residual Learning for Image Recognition
RESNET_KERNEL_SIZE = 3
# used to match dimensions of input to output, done by a 1x1 convolution
# He et al., Deep Residual Learning for Image Recognition page 4
def projection_shortcut(in_channels, out_channels):
return nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
# "when the shortcuts go across feature maps of two sizes, they are performed with a stride of 2"
# He et al., Deep Residual Learning for Image Recognition.
stride=2,
kernel_size=1,
),
nn.BatchNorm2d(out_channels),
)
class ResidualBlock(nn.Module):
def __init__(
self, in_channels, out_channels, stride=1, shortcut=None, *args, **kwargs
):
super().__init__(*args, **kwargs)
self.conv0 = nn.Sequential(
nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=stride, padding=1
),
nn.BatchNorm2d(out_channels),
nn.ReLU(),
)
self.conv1 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_channels),
)
self.relu = nn.ReLU()
self.out_channels = out_channels
self.shortcut = shortcut
def forward(self, x):
residual = x
out = self.conv0(x)
out = self.conv1(out)
if self.shortcut:
out += self.shortcut(residual)
else:
out += residual
out = self.relu(out)
return out
# MAI in ResNet with 34 layers
# He et al., Deep Residual Learning for Image Recognition.
class MaiRes(nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
# first 7x7 conv layer
self.conv = nn.Conv2d(
in_channels=3,
out_channels=64,
stride=2,
padding=3,
kernel_size=RESNET_KERNEL_SIZE,
)
self.maxpool = nn.MaxPool2d(kernel_size=RESNET_KERNEL_SIZE, stride=2)
# layers are named after the colors used for each group
# in the diagram presented in the ResNet paper
# 3 residual blocks for a total of 6 layers
self.layer_purple = nn.Sequential(
ResidualBlock(
in_channels=64,
out_channels=64,
stride=1,
),
ResidualBlock(
in_channels=64,
out_channels=64,
stride=1,
),
ResidualBlock(
in_channels=64,
out_channels=64,
stride=1,
),
)
# 4 residual blocks for a total of 8 layers
self.layer_green = nn.Sequential(
ResidualBlock(
in_channels=64,
out_channels=128,
stride=2,
shortcut=projection_shortcut(in_channels=64, out_channels=128),
),
ResidualBlock(
in_channels=128,
out_channels=128,
stride=1,
),
ResidualBlock(
in_channels=128,
out_channels=128,
stride=1,
),
ResidualBlock(
in_channels=128,
out_channels=128,
stride=1,
),
)
# 6 residual blocks for a total of 12 layers
self.layer_red = nn.Sequential(
ResidualBlock(
in_channels=128,
out_channels=256,
stride=2,
shortcut=projection_shortcut(in_channels=128, out_channels=256),
),
ResidualBlock(
in_channels=256,
out_channels=256,
stride=1,
),
ResidualBlock(
in_channels=256,
out_channels=256,
stride=1,
),
ResidualBlock(
in_channels=256,
out_channels=256,
stride=1,
),
ResidualBlock(
in_channels=256,
out_channels=256,
stride=1,
),
ResidualBlock(
in_channels=256,
out_channels=256,
stride=1,
),
)
# 3 residual blocks for a total of 6 layers
self.layer_blue = nn.Sequential(
ResidualBlock(
in_channels=256,
out_channels=512,
stride=2,
shortcut=projection_shortcut(in_channels=256, out_channels=512),
),
ResidualBlock(
in_channels=512,
out_channels=512,
stride=1,
),
ResidualBlock(
in_channels=512,
out_channels=512,
stride=1,
),
)
self.avgpool = nn.AvgPool2d(kernel_size=RESNET_KERNEL_SIZE)
self.fc = nn.Linear(in_features=2048, out_features=1)
def forward(self, x):
x = self.conv(x)
x = self.maxpool(x)
x = self.layer_purple(x)
x = self.layer_green(x)
x = self.layer_red(x)
x = self.layer_blue(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x