modify data gen script + add ds upload script
This commit is contained in:
@@ -1,107 +1,185 @@
|
||||
import dotenv
|
||||
dotenv.load_dotenv()
|
||||
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
import datasets
|
||||
import diffusers
|
||||
import dotenv
|
||||
import transformers
|
||||
import argparse
|
||||
from .hyperparams import MOONDREAM_REVISION
|
||||
|
||||
print(f"HF_HOME set to {os.getenv('HF_HOME')}")
|
||||
|
||||
# DATASET_SIZE = 10000
|
||||
# ROWS_PER_DS = 1250
|
||||
BATCH_SIZE = 4
|
||||
PARQUET_BATCH_SIZE = 200
|
||||
SKIP_PARQUET_BATCH = 203
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-m", "--message")
|
||||
|
||||
args = parser.parse_args()
|
||||
auth_token = os.getenv("HF_ACCESS_TOKEN")
|
||||
if not auth_token:
|
||||
print("huggingface access token not provided! please use the HF_ACCESS_TOKEN env var.")
|
||||
sys.exit(1)
|
||||
else:
|
||||
print("huggingface access token loaded!")
|
||||
|
||||
tokenizer = transformers.AutoTokenizer.from_pretrained("vikhyatk/moondream2")
|
||||
moondream = transformers.AutoModelForCausalLM.from_pretrained(
|
||||
"vikhyatk/moondream2",
|
||||
revision=MOONDREAM_REVISION,
|
||||
trust_remote_code=True,
|
||||
attn_implementation="flash_attention_2",
|
||||
torch_dtype=torch.float16,
|
||||
).to("cuda")
|
||||
|
||||
def collate(batch):
|
||||
images = []
|
||||
questions = []
|
||||
|
||||
for sample in batch:
|
||||
images.append(sample["image"])
|
||||
questions.append("Describe this image.")
|
||||
|
||||
return images, questions
|
||||
|
||||
flickr_dataset = datasets.load_dataset("nlphuji/flickr30k", split="test", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
wiki_art_dataset = datasets.load_dataset("huggan/wikiart", split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
anime_dataset = datasets.load_dataset("animelover/danbooru2022", "1-full", trust_remote_code=True, split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
coco_dataset = datasets.load_dataset("detection-datasets/coco", split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
movie_poster_dataset = datasets.load_dataset("skvarre/movie_posters-100k", split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
cars_dataset = datasets.load_dataset("tanganke/stanford_cars", split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
website_dataset = datasets.load_dataset("silatus/1k_Website_Screenshots_and_Metadata", split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
movie_scene_dataset = datasets.load_dataset("unography/movie-scenes-resized-captioned", split="train", streaming=True)\
|
||||
.select_columns(["image"])\
|
||||
.take(1)
|
||||
|
||||
ds = datasets.concatenate_datasets([
|
||||
flickr_dataset,
|
||||
wiki_art_dataset,
|
||||
anime_dataset,
|
||||
coco_dataset,
|
||||
movie_poster_dataset,
|
||||
cars_dataset,
|
||||
website_dataset,
|
||||
movie_scene_dataset,
|
||||
])
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
ds,
|
||||
batch_size=8,
|
||||
collate_fn=collate
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map={"": "cuda"},
|
||||
)
|
||||
|
||||
captions = []
|
||||
for batch in data_loader:
|
||||
images, questions = batch
|
||||
answers = moondream.batch_answer(
|
||||
images=images,
|
||||
prompts=questions,
|
||||
tokenizer=tokenizer
|
||||
)
|
||||
|
||||
for ans in answers:
|
||||
print(ans)
|
||||
print()
|
||||
|
||||
captions.extend(answers)
|
||||
|
||||
ds = ds.add_column("caption", captions)
|
||||
|
||||
del moondream
|
||||
|
||||
pipe = diffusers.StableDiffusion3Pipeline.from_pretrained(
|
||||
"stabilityai/stable-diffusion-3.5-large",
|
||||
torch_dtype=torch.bfloat16,
|
||||
token=auth_token,
|
||||
).to("cuda")
|
||||
device_map="balanced",
|
||||
)
|
||||
|
||||
image = pipe(
|
||||
"A capybara holding a sign that reads Hello World",
|
||||
num_inference_steps=28,
|
||||
guidance_scale=3.5,
|
||||
).images[0]
|
||||
image.save("capybara.png")
|
||||
def collate(batch):
|
||||
images = []
|
||||
keywords = []
|
||||
|
||||
for sample in batch:
|
||||
images.append(sample["image"])
|
||||
keywords.append([""])
|
||||
|
||||
return images, keywords
|
||||
|
||||
# flickr_dataset = datasets.load_dataset("nlphuji/flickr30k", split="test", streaming=True)\
|
||||
# .select_columns(["image"])\
|
||||
|
||||
wiki_art_dataset = datasets.load_dataset("huggan/wikiart", split="train", streaming=True)\
|
||||
.select_columns(["image"])
|
||||
|
||||
# anime_dataset_ft = datasets.Features({"image": datasets.Image(decode=True)})
|
||||
# anime_dataset = datasets.load_dataset("animelover/danbooru2022", "1-full", trust_remote_code=True, split="train", streaming=True, features=anime_dataset_ft)\
|
||||
# .select_columns(["image"])\
|
||||
# .take(ROWS_PER_DS)\
|
||||
# .add_column("question", ["Describe this image in one sentence. Include the word anime in the sentence."] * ROWS_PER_DS)\
|
||||
# .add_column("keywords", [["anime"]] * ROWS_PER_DS)
|
||||
|
||||
# coco_dataset = datasets.load_dataset("detection-datasets/coco", split="train", streaming=True)\
|
||||
# .select_columns(["image"])\
|
||||
# .take(ROWS_PER_DS)\
|
||||
# .add_column("question", ["Describe this image in one sentence."] * ROWS_PER_DS)\
|
||||
# .add_column("keywords", [[""]] * ROWS_PER_DS)
|
||||
|
||||
# movie_poster_dataset = datasets.load_dataset("skvarre/movie_posters-100k", split="train", streaming=True)\
|
||||
# .select_columns(["image"])\
|
||||
# .take(ROWS_PER_DS)\
|
||||
# .add_column("question", ["Describe this image in one sentence."] * ROWS_PER_DS)\
|
||||
# .add_column("keywords", [[""]] * ROWS_PER_DS)
|
||||
|
||||
# cars_dataset = datasets.load_dataset("tanganke/stanford_cars", split="train", streaming=True)\
|
||||
# .select_columns(["image"])\
|
||||
# .take(ROWS_PER_DS)\
|
||||
# .add_column("question", ["Describe this image in one sentence."] * ROWS_PER_DS)\
|
||||
# .add_column("keywords", [[""]] * ROWS_PER_DS)
|
||||
|
||||
# website_dataset = datasets.load_dataset("silatus/1k_Website_Screenshots_and_Metadata", split="train", streaming=True)\
|
||||
# .select_columns(["image"])\
|
||||
# .take(ROWS_PER_DS)\
|
||||
# .add_column("question", ["Describe this image in one sentence."] * ROWS_PER_DS)\
|
||||
# .add_column("keywords", [[""]] * ROWS_PER_DS)
|
||||
|
||||
# movie_scene_dataset = datasets.load_dataset("unography/movie-scenes-resized-captioned", split="train", streaming=True)\
|
||||
# .select_columns(["image"])\
|
||||
# .take(ROWS_PER_DS)\
|
||||
# .add_column("question", ["Describe this image in one sentence."] * ROWS_PER_DS)\
|
||||
# .add_column("keywords", [[""]] * ROWS_PER_DS)
|
||||
|
||||
# ds = datasets.concatenate_datasets([
|
||||
# flickr_dataset,
|
||||
# wiki_art_dataset,
|
||||
# anime_dataset,
|
||||
# coco_dataset,
|
||||
# movie_poster_dataset,
|
||||
# cars_dataset,
|
||||
# website_dataset,
|
||||
# movie_scene_dataset,
|
||||
# ]).cast_column("image", datasets.Image(decode=True)).skip(SKIP_PARQUET_BATCH * PARQUET_BATCH_SIZE)
|
||||
|
||||
ds = wiki_art_dataset.cast_column("image", datasets.Image(decode=True))
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
ds,
|
||||
batch_size=BATCH_SIZE,
|
||||
collate_fn=collate
|
||||
)
|
||||
|
||||
temp_ds = {
|
||||
"image": [],
|
||||
"keywords": [],
|
||||
"caption": [],
|
||||
"generated_image": []
|
||||
}
|
||||
temp_ds_size = 0
|
||||
|
||||
ds_features = datasets.Features({
|
||||
"image": datasets.Image(),
|
||||
"keywords": datasets.Sequence(datasets.Value(dtype="string")),
|
||||
"caption": datasets.Value(dtype="string"),
|
||||
"generated_image": datasets.Image(),
|
||||
})
|
||||
|
||||
generator = torch.Generator(device="cpu").manual_seed(12321313)
|
||||
|
||||
batch_count = SKIP_PARQUET_BATCH
|
||||
|
||||
for batch_index, batch in enumerate(data_loader):
|
||||
images, keywords = batch
|
||||
|
||||
prompts = []
|
||||
for i, img in enumerate(images):
|
||||
caption = moondream.caption(img, length="normal")["caption"]
|
||||
|
||||
add_keywords = len(keywords[i]) > 0 and keywords[i][0] != ""
|
||||
for k in keywords[i]:
|
||||
if k and k in caption:
|
||||
add_keywords = False
|
||||
break
|
||||
|
||||
prompt = caption
|
||||
if add_keywords:
|
||||
prompt = f"{', '.join(keywords[i])}, {caption}"
|
||||
|
||||
prompts.append(prompt)
|
||||
|
||||
gen_imgs = pipe(
|
||||
prompts,
|
||||
num_inference_steps=28,
|
||||
guidance_scale=3.5,
|
||||
generator=generator,
|
||||
max_sequence_length=512,
|
||||
).images
|
||||
|
||||
temp_ds["image"].extend(images)
|
||||
temp_ds["caption"].extend(prompts)
|
||||
temp_ds["keywords"].extend(keywords)
|
||||
temp_ds["generated_image"].extend(gen_imgs)
|
||||
|
||||
temp_ds_size += BATCH_SIZE
|
||||
|
||||
if temp_ds_size == PARQUET_BATCH_SIZE:
|
||||
batch_ds = datasets.Dataset.from_dict(temp_ds, features=ds_features)
|
||||
batch_ds.to_parquet(
|
||||
f"data/batch_{batch_count}.parquet",
|
||||
)
|
||||
temp_ds_size = 0
|
||||
temp_ds["image"].clear()
|
||||
temp_ds["caption"].clear()
|
||||
temp_ds["keywords"].clear()
|
||||
temp_ds["generated_image"].clear()
|
||||
|
||||
batch_count += 1
|
||||
|
@@ -1,4 +1,4 @@
|
||||
MOONDREAM_REVISION = "2024-08-26"
|
||||
MOONDREAM_REVISION = "2025-01-09"
|
||||
|
||||
TEST_SIZE = 0.2
|
||||
|
||||
|
22
moondream/upload_dataset.py
Normal file
22
moondream/upload_dataset.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import sys
|
||||
import os
|
||||
import dotenv
|
||||
dotenv.load_dotenv()
|
||||
|
||||
access_token = os.getenv("HF_ACCESS_TOKEN")
|
||||
if not access_token:
|
||||
print("Please provide huggingface access token via HF_ACCESS_TOKEN.")
|
||||
sys.exit(1)
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
from huggingface_hub.constants import REPO_TYPE_DATASET
|
||||
|
||||
api = HfApi(token=access_token)
|
||||
|
||||
api.upload_large_folder(
|
||||
repo_id="athenlab/reva",
|
||||
folder_path="./data",
|
||||
repo_type=REPO_TYPE_DATASET,
|
||||
private=False,
|
||||
print_report=True,
|
||||
)
|
Reference in New Issue
Block a user