feat: add code for finetuning moondream
This commit is contained in:
51
resnet/augmentation.py
Normal file
51
resnet/augmentation.py
Normal file
@@ -0,0 +1,51 @@
|
||||
import albumentations as a
|
||||
import numpy as np
|
||||
from albumentations.pytorch import ToTensorV2
|
||||
from hyperparams import CROP_SIZE
|
||||
|
||||
|
||||
preprocess_training = a.Compose(
|
||||
[
|
||||
a.augmentations.PadIfNeeded(min_width=CROP_SIZE, min_height=CROP_SIZE),
|
||||
a.RandomCrop(width=CROP_SIZE, height=CROP_SIZE),
|
||||
a.GaussNoise(),
|
||||
a.Flip(p=0.5),
|
||||
a.RandomRotate90(p=0.5),
|
||||
a.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
ToTensorV2(),
|
||||
]
|
||||
)
|
||||
preprocess_validation = a.Compose(
|
||||
[
|
||||
a.augmentations.PadIfNeeded(min_width=CROP_SIZE, min_height=CROP_SIZE),
|
||||
a.CenterCrop(width=CROP_SIZE, height=CROP_SIZE),
|
||||
a.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
ToTensorV2(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def transform_training(example):
|
||||
transformed = []
|
||||
for pil_image in example["image"]:
|
||||
array = np.array(pil_image.convert("RGB"))
|
||||
# check if image is in (height, width, channel) shape
|
||||
# if not, do a transpose
|
||||
if array.shape[-1] != 3:
|
||||
array = np.transpose(array, (1, 2, 0))
|
||||
img = preprocess_training(image=array)["image"]
|
||||
transformed.append(img)
|
||||
example["pixel_values"] = transformed
|
||||
return example
|
||||
|
||||
|
||||
def transform_validation(example):
|
||||
transformed = []
|
||||
for pil_image in example["image"]:
|
||||
array = np.array(pil_image.convert("RGB"))
|
||||
if array.shape[-1] != 3:
|
||||
array = np.transpose(array, (1, 2, 0))
|
||||
img = preprocess_validation(image=array)["image"]
|
||||
transformed.append(img)
|
||||
example["pixel_values"] = transformed
|
||||
return example
|
Reference in New Issue
Block a user